Time-dependent dielectric breakdown (TDDB) distribution in n-MOSFET with HfSiON gate dielectrics under DC and AC stressing

نویسندگان

  • Izumi Hirano
  • Yasushi Nakasaki
  • Shigeto Fukatsu
  • Masakazu Goto
  • Koji Nagatomo
  • Seiji Inumiya
  • Katsuyuki Sekine
  • Yuichiro Mitani
  • Kikuo Yamabe
چکیده

This paper discusses time-dependent dielectric breakdown (TDDB) in n-FETs with HfSiON gate stacks under various stress conditions. It was found that the slope of Weibull distribution of Tbd, Weibull β, changes with stress conditions, namely, DC stress, unipolar AC stress and bipolar AC stresses. On the other hand, the time evolution component of stress-induced leakage current (SILC) was not changed by these stresses. These experimental results indicate that the modulation of electron trapping/de-trapping and hole trapping/de-trapping by stress condition changes the defect size in high-k gate dielectrics. Therefore, the control of injected carrier and the characteristics of trapping can provide the steep Weibull distribution of Tbd, leading to long-term reliability in scaled CMOS devices with high-k gate stacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Dielectric Breakdown of La2O3-Doped High-k/Metal Gate Stacked NMOSFETs

Time-dependent dielectric breakdown (TDDB) characteristics of La2O3-doped high-k dielectric in Hf-based high-k/TaN metal gate stack were studied. Unlike the abrupt breakdown in the conventional SiO2, dielectric breakdown behaviors of La-incorporated HfON and HfSiON dielectrics show progressive breakdown characteristics. Moreover, the extracted Weibull slope β of breakdown distribution is in the...

متن کامل

Polarity Dependent Reliability of Advanced MOSFET Using MOCVD Nitrided Hf-silicate High-k Gate Dielectric

We report reliability of MOSFETs with MOCVD nitrided Hfsilicate (HfSiON) high-k gate dielectric. HfSiON has shown superior electrical characteristics, such as low leakage relative to SiO2 and high mobility compared to other high-k gate dielectrics [1]. SILC is found to be comparable to SiO2 and better than Hf-silicate without nitridation. TDDB and BTI reveal significant difference between inver...

متن کامل

Breakdown and Reliability of CMOS Devices with Stacked Oxide/Nitride and Oxynitride Gate Dielectrics Prepared by RPECVD

Lee, Yi-Mu. Breakdown and reliability of CMOS devices with stacked oxide/nitride and oxynitride gate dielectrics prepared by RPECVD. (Under the direction of Professor Gerald Lucovsky) Remote-plasma-enhanced CVD (RPECVD) silicon nitride and silicon oxynitride alloys have been proposed to be the attractive alternatives to replace conventional oxides as the CMOS logic and memory technology node is...

متن کامل

Characterization of Charge Trapping and Dielectric Breakdown of HfAlOx/SiON Dielectric Gate Stack

1 Introduction Hf-based silicates and aluminates showing good thermal stability [1] and favorable energy-band alignment [2] have been intensively studied as most promising alternative gate dielectrics. Despite a number of efforts to improve the dielectric properties of such high-k thin films, reliability issues such as charge trapping and dielectric wear-out are still matters of research [3, 4]...

متن کامل

Comparison between direct current and sinusoidal current stressing of gate oxides and oxide/silicon interfaces in metal–oxide–silicon field-effect transistors

Articles you may be interested in Observation of gate bias dependent interface coupling in thin silicon-on-insulator metal-oxide-semiconductor field-effect transistors Mobility comparison between front and back channels in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect transistors by the front-gate split capacitance-voltage method Appl. Trap evaluations of metal/oxide/sil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2013